Page 112 고등학교 디지털 논리 회로 교과서
P. 112
논리식의 간소화
학 습 목 표 1 불 대수를 활용하여 논리식을 간소화할 수 있다.
A
2 카노도를 활용하여 논리식을 간소화할 수 있다. B
D
A D
핵 심질 문 간소화된 논리식은 논리 회로 설계에 어떤 영향을 B
주는가?
1 논리식 간소화의 필요성
불 대수로 표현한 논리식은 논리 게이트를 이용하여 논리 회로로 구성할 수 있다.
논리 게이트와 입・출력 선의 개수를 줄여 논리 회로를 간소화하는 것은 그만큼 회로
가 간단해진다는 것을 의미한다. 구현한 논리 회로가 복잡하거나 소량 생산되는 부품
일 경우에는 시스템의 신뢰성 및 경제성에 관한 문제가 있기 때문에 논리 회로를 구
현하기 전에 간소화하는 작업을 해야 한다. 즉, 논리식이 간소화되면 게이트 수와 오
류 발생률을 줄일 수 있어서 회로 조립 및 생산 비용 절감과 신뢰도가 향상되고, 효율
성을 높일 수 있다. 이와 같이 논리식에서 불필요한 항과 변수를 제거하여 간소화된
등가 식으로 만드는 것을 논리식의 간소화라고 한다.
둘 다 같은 회로라면
어떤 것을 사용해야
더 효율적일까? 모리스 카노
(Maurice Karnaugh, 1924∼)
미국의 수학자이자 물리학자로 벨
그림 Ⅳ- 2 논리 회로의 간소화 예
연구소에서 근무하는 동안 1954년
카노도를 개발하였다.
논리식을 간소화하면 그림 Ⅳ-2와 같이 여러 개의 게이트들을 하나의 게이트로 구
카노도
성할 수 있어서 경제적이다. 카노도는 모리스 카노가 소개하였
으며, 복잡한 논리식을 편리하게 간
논리식을 간소화시키는 방법에는 불 대수에 의한 방법과 카노도에 의한 방법 등이 있다. 소화할 수 있다.
110 Ⅳ. 논리 회로 설계